The Classification of the Largest Caps in AG(5, 3)

نویسندگان

  • Yves Edel
  • Sandy Ferret
  • Ivan N. Landjev
  • Leo Storme
چکیده

We prove that 45 is the size of the largest caps in AG(5, 3), and such a 45-cap is always obtained from the 56-cap in PG(5, 3) by deleting an 11-hyperplane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caps and Colouring Steiner Triple Systems

Hill [6] showed that the largest cap in PG(5, 3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5, 3). Here we show that the size of a cap in AG(5, 3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5, 3). Using these two results we are able to prove that the Steiner triple system AG(5, 3) is 6-chromatic, and so we exhibi...

متن کامل

Partitions of AG(4, 3) into maximal caps

In a geometry, a maximal cap is a collection of points of largest size no three of which are collinear. In AG(4, 3), maximal caps contain 20 points; the 81 points of AG(4, 3) can be partitioned into 4 mutually disjoint maximal caps together with a single point P , where every pair of points that makes a line with P lies entirely inside one of those caps. The caps in a partition can be paired up...

متن کامل

On multiple caps in finite projective spaces

In this paper, we consider new results on (k, n)-caps with n > 2. We provide a lower bound on the size of such caps. Furthermore, we generalize two product constructions for (k, 2)-caps to caps with larger n. We give explicit constructions for good caps with small n. In particular, we determine the largest size of a (k, 3)-cap in PG(3, 5), which turns out to be 44. The results on caps in PG(3, ...

متن کامل

Sequences in abelian groups G of odd order without zero-sum subsequences of length exp ( G )

We present a new construction for sequences in the finite abelian group C n without zero-sum subsequences of length n, for odd n. This construction improves the maximal known cardinality of such sequences for r > 4 and leads to simpler examples for r > 2. Moreover we explore a link to ternary affine caps and prove that the size of the second largest complete caps in AG(5, 3) is 42.

متن کامل

Complete ( q 2 + q + 8 ) / 2 - caps in the projective space PG ( 3 , q ) with odd prime q ≡ 2 ( mod 3 )

Abstract. In the projective space PG(3, q) with odd prime q ≡ 2 (mod 3), q ≥ 11, a new infinite family of complete (q + q + 8)/2-caps is constructed. It gives a new lower bound on the second largest size m′2(3, q) of complete caps: (q 2 + q + 8)/2 ≤ m ′2(3, q). The structure of one of the two existing complete 20-caps in PG(3, 5) is described. The new upper bounds on the smallest size of comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2002